Below is the syntax highlighted version of smallworld.py
from §4.5 Case Study: Small World.
#----------------------------------------------------------------------- # smallworld.py #----------------------------------------------------------------------- import sys import stdio import instream from graph import Graph from pathfinder import PathFinder #----------------------------------------------------------------------- # Return the average degree of graph. def averageDegree(graph): return 2.0 * graph.countE() / graph.countV() #----------------------------------------------------------------------- # Return the average path length of graph. def averagePathLength(graph): total = 0 for v in graph.vertices(): pf = PathFinder(graph, v) for w in graph.vertices(): total += pf.distanceTo(w) return 1.0 * total / (graph.countV() * (graph.countV() - 1)) #----------------------------------------------------------------------- # Return the clustering coefficient of graph. def clusteringCoefficient(graph): total = 0 for v in graph.vertices(): possible = graph.degree(v) * (graph.degree(v) - 1) actual = 0 for u in graph.adjacentTo(v): for w in graph.adjacentTo(v): if graph.hasEdge(u, w): actual += 1 if possible > 0: total += 1.0 * actual / possible return total / graph.countV() #----------------------------------------------------------------------- # Test client. def main(): graphFile = sys.argv[1] delimiter = sys.argv[2] graph = Graph(graphFile, delimiter) vertexCount = graph.countV() edgeCount = graph.countE() stdio.writef('%d vertices, %d edges\n', vertexCount, edgeCount) avgDegree = averageDegree(graph) stdio.writef('average degree = %7.3f\n', avgDegree) avgPathLength = averagePathLength(graph) stdio.writef('average path length = %7.3f\n', avgPathLength) clusteringCoef = clusteringCoefficient(graph) stdio.writef('clustering coefficient = %7.3f\n', clusteringCoef) if __name__ == '__main__': main() #----------------------------------------------------------------------- # python smallworld.py tinygraph.txt " " # 5 vertices, 7 edges # average degree = 2.800 # average degree = 1.300 # clustering coefficient = 0.767