Below is the syntax highlighted version of stdrandom.py
from § Code.
""" stdrandom.py The stdrandom module defines functions related to pseudo-random numbers. """ #----------------------------------------------------------------------- import random import math #----------------------------------------------------------------------- def seed(i=None): """ Seed the random number generator as hash(i), where i is an int. If i is None, then seed using the current time or, quoting the help page for random.seed(), "an operating system specific randomness source if available." """ random.seed(i) #----------------------------------------------------------------------- def uniformInt(lo, hi): """ Return an integer chosen uniformly from the range [lo, hi). """ return random.randrange(lo, hi) #----------------------------------------------------------------------- def uniformFloat(lo, hi): """ Return a number chosen uniformly from the range [lo, hi). """ return random.uniform(lo, hi) #----------------------------------------------------------------------- def bernoulli(p=0.5): """ Return True with probability p. """ return random.random() < p #----------------------------------------------------------------------- def binomial(n, p=0.5): """ Return the number of heads in n coin flips, each of which is heads with probability p. """ heads = 0 for i in range(n): if bernoulli(p): heads += 1 return heads #----------------------------------------------------------------------- def gaussian(mean=0.0, stddev=1.0): """ Return a float according to a standard Gaussian distribution with the given mean (mean) and standard deviation (stddev). """ # Approach 1: # return random.gauss(mu, sigma) # Approach 2: Use the polar form of the Box-Muller transform. x = uniformFloat(-1.0, 1.0) y = uniformFloat(-1.0, 1.0) r = x*x + y*y while (r >= 1) or (r == 0): x = uniformFloat(-1.0, 1.0) y = uniformFloat(-1.0, 1.0) r = x*x + y*y g = x * math.sqrt(-2 * math.log(r) / r) # Remark: x * math.sqrt(-2 * math.log(r) / r) # is an independent random gaussian return mean + stddev * g #----------------------------------------------------------------------- def discrete(a): """ Return a float from a discrete distribution: i with probability a[i]. Precondition: the elements of array a sum to 1. """ r = uniformFloat(0.0, sum(a)) subtotal = 0.0 for i in range(len(a)): subtotal += a[i] if subtotal > r: return i #return len(a) - 1 #----------------------------------------------------------------------- def shuffle(a): """ Shuffle array a. """ # Approach 1: # for i in range(len(a)): # j = i + uniformInt(len(a) - i) # temp = a[i] # a[i] = a[j] # a[j] = temp # Approach 2: random.shuffle(a) #----------------------------------------------------------------------- def exp(lambd): """ Return a float from an exponential distribution with rate lambd. """ # Approach 1: # return random.expovariate(lambd) # Approach 2: return -math.log(1 - random.random()) / lambd #----------------------------------------------------------------------- def _main(): """ For testing. """ import sys import stdio seed(1) n = int(sys.argv[1]) for i in range(n): stdio.writef(' %2d ' , uniformInt(10, 100)) stdio.writef('%8.5f ' , uniformFloat(10.0, 99.0)) stdio.writef('%5s ' , bernoulli()) stdio.writef('%5s ' , binomial(100, .5)) stdio.writef('%7.5f ' , gaussian(9.0, .2)) stdio.writef('%2d ' , discrete([.5, .3, .1, .1])) stdio.writeln() if __name__ == '__main__': _main() #----------------------------------------------------------------------- # python stdrandom.py 5 # 27 60.65914 False 41 9.01682 0 # 55 46.88378 True 48 8.90171 0 # 58 92.96468 True 52 9.12770 0 # 79 64.41387 False 47 9.49241 0 # 29 32.30299 True 45 8.77630 1